- * Present address: Tierärztliche Klinik, Schlachthofplatz 12, D-8560 Lauf/BRD.
- Acknowledgments. The author gratefully acknowledges the excellent technical assistance of I. Bolliger, J. Heller, S. Küng, B. Müller, B. Schmidt and U. Völkle.
- B. Müller, B. Schmidt and U. Völkle.
 Altland, P. H., Brubach, H. F., Parker, M. C., and Highman, B., Am. J. Physiol. 212 (1967) 142.
- 3 Kaczmarczyk, G., and Reinhardt, H.W., Lab. Anim. Sci. 25 (1975) 184.
- 4 Lewis, L.D., Ponten, U., and Siesjö, B.K., Respir. Physiol. 19 (1973) 312.
- 5 Libermann, I.M., Capano, A., Gonzales, F., Brazzuna, H., Garcia, H., and Gelabert, A.G., Lab. Anim. Sci. 23 (1973) 862.
- 6 Marder, J., and Bar-Ilan, A., Physiol. Zool. 48 (1975) 282.
- 7 Pepelko, W.E., and Dixon, G.A., J. appl. Physiol. 38 (1975) 518.
- 8 Simons, W.B., Kahn, F.H., and Goze, L.B., Fedn Proc. 25 (1966) 1274.
- 9 Bar-Ilan, A., and Marder, J., Pflügers Arch. 384 (1980) 93.
- 10 Bailey, N.T.J., Statistical Methods in Biology. The English Universities Press, London 1959.
- Brun-Pascaud, M., Gaudebout, C., Blayo, M.C., and Pocidalo, J.J., Respir. Physiol. 48 (1982) 45.

- 12 Ledsome, J.R., Linden, R.J., and Norman, J., J. Physiol. 212 (1971) 611.
- 13 Priano, L.L., Traber, D.L., and Wilson, R.D., J. Pharmac. exp. Ther. 165 (1969) 126.
- 14 Steiner, S.H., and Calvin, J.R., J. thorac. cardiovasc. Surg. 54 (1967) 592.
- 15 Sharpless, S.K., The barbiturates, in: The Pharmacological Basis of Therapeutics, 4th edn, p. 105. Eds L. S. Goodman and A. Gilman, MacMillan, London 1970.
- 16 Graca, J.G., and Garst, E.L., Anaesthesiology 18 (1957) 461.
- 17 Srivasta, S., Khanna, D.N., and Shukla, R.C., Indian J. Physiol. Pharmac. 9 (1966) 63.
- 18 Gilmore, J.P., Am. J. Physiol. 209 (1965) 404.
- 19 Nash, C.B., Davis, F., and Woodbury, R.A., Am. J. Physiol. 185 (1956) 107.
- 20 Rampton, D. S., and Ramsey, D. J., J. Physiol. 237 (1974) 521.
- Dawson, C.A., Nadel, E.R., and Horvath, S.M., J. appl. Physiol. 30 (1971) 322.
- 22 Upton, P.K., and Morgan, D.J., Lab. Anim. 9 (1975) 85.

0014-4754/84/050476-03\$1.50 + 0.20/0 © Birkhäuser Verlag Basel, 1984

Potentiating action of hexoprenaline on ¹⁴C-aminopyrine uptake by isolated rat parietal cells

S. Maśliński and H.-J. Ruoff

Pharmakologisches Institut der Universität Tübingen, Wilhelmstr. 56, D-7400 Tübingen (Federal Republic of Germany), 26 June 1983

Summary. Hexoprenaline potentiated the ¹⁴C-aminopyrine uptake (a reliable index of H⁺ generation) of isolated rat gastric cells stimulated by 10^{-6} – 10^{-4} mol/l carbachol, and inhibited that in response to 10^{-4} mol/l histamine without and in the presence of propranolol. It is concluded that hexoprenaline acts as a partial agonist on parietal cell H₂-receptors and that β -adrenoceptor activation may functionally modulate gastric acid secretion.

The presence of histamine, acetylcholine and gastrin-receptor sites on parietal cells is well documented². Secretagogues interact and potentiate each other in vivo³ and in vitro⁴. Histamine exerts its action by stimulation of H_2 -receptor sensitive adenylate cyclase which then initiates the intracellular steps of H^+ production⁵. It was previously shown that β -adrenergic stimulation also activates gastric mucosal adenylate cyclase⁶⁻⁹. Moreover, we found that the selective β_2 -receptor agonist hexoprenaline stimulated the ¹⁴C-aminopyrine (¹⁴C-AP) uptake of isolated gastric cells⁹, a reaction which reflects acid production inside the parietal cell¹⁰. The present investigation studied the interaction of hexoprenaline on the ¹⁴C-AP uptake in response to histamine or cholinergic stimulation by carbachol.

Experimental. Cell isolation and 14 C-AP uptake measurements have been described previously in detail 9,11 . All experiments with histamine were performed in the presence of 10^{-3} mol/l isobutylmehtylxanthine (IBMX) and 10^{-3} mol/l Ca^{2+} . The carbachol experiments were done without IBMX and in the presence of 2×10^{-3} mol/l Ca^{2+} . The results were evaluated by the t-test for paired data.

Results. The effect of hexoprenaline, alone and with 10^{-4} mol/l histamine, a maximal effective concentration, on $^{14}\text{C-AP}$ uptake is shown in figure 1. Hexoprenaline stimulated the basal uptake by 100% (p < 0.001), 10^{-5} mol/l being the maximal effective concentration. The adrenergic β -receptor antagonist propranolol reduced the hexoprenaline stimulation and 10^{-7} mol/l were almost sufficient to abolish any response. The histamine H_2 -receptor antagonist cimetidine also exerted inhibitory

potencies; however, concentrations higher than 10^{-7} mol/l were required.

The histamine-stimulated $^{14}\text{C-AP}$ uptake was much more pronounced than that following hexoprenaline, and was significantly reduced by $16.5\text{--}30.5\,\%$ in the presence of $10^{-6}\text{--}10^{-4}$ mol/l hexoprenaline. Propranolol (10^{-7} mol/l) reduced the histamine stimulation by $12\,\%$ (n.s.), but did not reverse the action of 10^{-4} mol/l hexoprenaline, which decreased the histamine effect by $38\,\%$ (p < 0.01) in the presence of the adrenergic β -blocker. When lower, i.e., threshold concentrations of histamine (10^{-6} mol/l) were used, the results were less clear and in some experiments even potentiation of $^{14}\text{C-AP}$ uptake was observed.

For optimal cholinergic stimulation the cell medium had to be IBMX free and contained 2×10^{-3} mol/l Ca²⁺. Carbachol stimulated the AP uptake in a concentration-dependent manner, maximally by 85% (10⁻⁴ mol/l). Without IBMX, hexoprenaline alone evoked no response. However, the β_2 -receptor agonist increased significantly the ¹⁴C-AP uptake due to carbachol, which now stimulated the uptake maximally by 134%. It seems that this effect represents true potentiation, since the values are higher than the calculated sum of responses to both compounds.

Discussion. The data confirm and extend our previous findings with β-receptor agonists⁹ and demonstrate a potentiating interaction between hexoprenaline and carbachol on ¹⁴C-AP accumulation of isolated rat gastric cells. They are partly contradictory to the general view that adrenergic stimulation solely inhi-

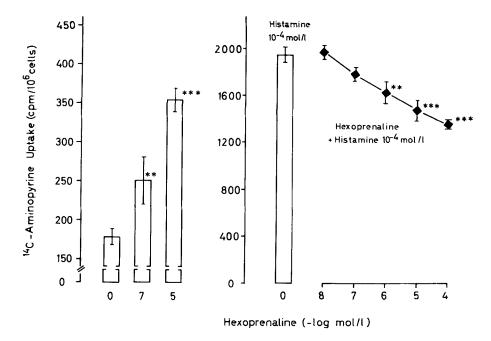


Figure 1. Influence of hexoprenaline on the histamine-stimulated 14 C-aminopyrine uptake of isolated gastric mucosal cells with $25 \pm 2.2\%$ parietal cells. Left: Effect of hexoprenaline (10^{-8} and 10^{-5} mol/l) alone. Right: Effect of hexoprenaline (10^{-8} to 10^{-4} mol/l) on the histamine (10^{-4} mol/l) stimulated 14 C-AP uptake. All experiments were carried out in the presence of IBMX and Ca^{2+} at a concentration of 10^{-3} mol/l. Values $\bar{x} \pm SEM$, N = 5, **p < 0.01, ***p < 0.001.

bits gastric acid secretion¹², and support recent experiments with isolated rat stomach preparations responding to β_2 -adrenoceptor stimulation by acid production^{13,14}. Some previously published in vivo studies have also indicated that β -receptor agonists increase¹⁵ and β -receptor antagonists decrease acid secretion¹⁶ in rats. It was suggested that β -receptor agonists exert a certain intrinsic activity in relation to H⁺ production initiated by activation of adenylate cyclase and blocked by propranolol⁹. It seems that this effect can only be seen in the absence of physiological regulatory mechanisms, using isolated cells or an isolated stomach preparation^{9,13,14}.

In vivo experiments are difficult to interpret, because of the broad spectrum of catecholamine effects with dominating haemodynamic and neurohormonal interactions. Nevertheless, most in vivo experiments have shown that β -adrenergic agonists inhibit gastric acid secretion (for review of the numerous publications see Burnstock and Wong¹²) and that histamine-induced gastric secretion is more difficult to suppress with catecholamines than that in response to pentagastrin¹⁷. This peptide was not studied, since pentagastrin does not stimulate ¹⁴C-AP uptake of rat gastric cells.

Curwain et al. 18 and Lundell and Svensson 19 showed an increase in H+ production and gastric mucosal histamine formation after propranolol treatment. They suggested a causal link between adrenergic and histaminergic systems, the latter under the inhibitory control of catecholamines. Our results showed an increase of ¹⁴C-AP uptake caused by hexoprenaline alone, and inhibition of the maximally-stimulated H⁺ production in response to histamine without and in the presence of an adrenergic β -blocker. They indicate interaction at the receptor level and favor the view that hexoprenaline, like some other adrenergic agents²⁰, may be a partial agonist of histamine H₂-receptors localized on the parietal cell. Indirect β -adrenoceptor mediated effects cannot be totally excluded, but the experiments in the presence of propranolol do not favor this explanation. The phenomenon that the effect of 2 agents in combination is greater than the sum of the effects of each agent alone is considered as potentiation³ and this definition is suitable for studies with isolated gastric mucosal cells⁸. Potentiating interactions have been found between histamine and carbachol in isolated

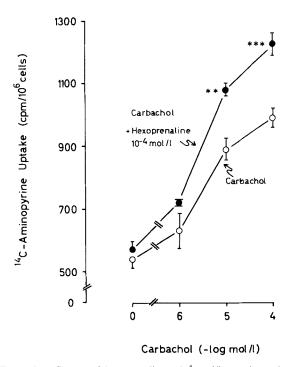


Figure 2. Influence of hexoprenaline (10^{-4} mol/l) on the carbachol (10^{-6} - 10^{-4} mol/l) stimulated ¹⁴C-AP uptake of isolated gastric mucosal cells with 23.8 \pm 1.8% parietal cells. All experiments were carried out without IBMX and in the presence of 2 × 10^{-3} mol/l Ca²⁺. Values \bar{x} \pm SEM, N = 6, **p < 0.01, ***p < 0.001.

canine² and rat²¹ parietal cells and between gastrin and histamine in dog and rabbit cell preparations^{2, 22}. Whether the different mechanisms of action – elevation of endogenous cAMP (histamine) and adenylate cyclase independent transmitter systems (gastrin and carbachol) – are involved in these events is not known. Anyway, according to this view and the concept of hexoprenaline as a partial histamine H₂-receptor agonist, potentiation of ¹⁴C-AP uptake due to carbachol is conceivable. The cell preparations used consist of 20–30% of parietal cells. Therefore, we cannot exclude the possibility that hexoprenaline releases gastrin or histamine from endocrine nonparietal cells. The release of gastrin by adrenaline²³, as well as that of

histamine by some adrenergic agents, has been reported²⁰. In some of our experiments (data not shown), we used cells prepared from the whole rat stomach, including the antrum. In these preparations far more gastrin containing cells are available, but the results were similar. Therefore, it seems reasonable to suspect that release of gastrin does not contribute to potentiation between hexoprenaline and carbachol; however, more studies with enriched fractions of different pools of gastric mucosal cells are necessary to elucidate the mechanisms involved in the action of hexoprenaline on gastric cells. It may be concluded that β -adrenoceptor stimulation functionally modulates gastric acid secretion.

- 1 Acknowledgments. S. Maśliński, Institute of Rheumatology, Warszawa, held a fellowship of the Alexander v. Humboldt-Foundation. The study was supported by the Deutsche Forschungsgemeinschaft. The skilful technical assistance of Mrs R. Maier and Mr R. Beer is gratefully acknowledged.
- 2 Soll, A.H., in: Physiology of the gastrointestinal tract, vol.1, p.673. Ed L.R. Johnson. Raven Press, New York 1981.
- 3 Gardner, J.D., Jackson, M.J., Batzri, S., and Jensen, R.T., Gastroenterology 74 (1978) 349.
- 4 Soll, A.H., Gastroenterology 83 (1982) 216.
- 5 Code, C. F., in: Pharmacology of Histamine Receptors, p. 217. Eds C. R. Ganellin and M. E. Parsons. Wright, Bristol/London/Boston 1982.
- 6 Ruoff, H.J., Eur. J. Pharmac. 44 (1977) 349.
- 7 Thompson, W.J., Chang, L.K., and Jacobson, E.D., Gastro-enterology 72 (1977) 244.
- 8 Thompson, W.J., Chang, L.K., and Rosenfeld, G.C., Am. J. Physiol. 240; Gastrointest. Liver Physiol. 3 (1981) G76.
- Ruoff, H.J., Wagner, M., Günther, Ch., and Maśliński, S., Naunyn-Schmiedebergs Arch. Pharmac. 320 (1982) 175.
- 10 Berglindh, T., Helander, H.F., and Obrink, K.J., Acta physiol. scand. 97 (1976) 401.
- 11 Lewin, A., Cheret, A.M., Soumarmon, A., and Girodet, J., Biol. gastroent. 7 (1974) 139.
- 12 Burnstock, G., and Wong, H., in: Handbook Exp. Pharmac. 54/II,

- p.129. Ed L. Szekeres. Springer, Berlin/Heidelberg/New York 1981.
- 13 Canfield, S.P., and Price, C.A., J. Physiol. 316 (1981) 11.
- 14 Canfield, S.P., Hughes, A.D., Price, C.A., and Spencer, J.E., J. Physiol. 316 (1981) 23.
- 15 Tani, S., and Mutoh, N., Biochem. Pharmac. 28 (1979) 678.
- 16 Bass, P., and Patterson, M.A., J. Pharmac. exp. Ther. 156 (1967) 142.
- 17 Harries, E. H. L., J. Physiol. 138 (1957) 48P.
- 18 Curwain, B.P., Holton, P., McIsaak, R.L., and Spencer, J., Br. J. Pharmac. 51 (1974) 217.
- 19 Lundell, L., and Svensson, S.E., Br. J. Pharmac. 52 (1974) 69.
- 20 Ganellin, C. R., in: Pharmacology of Histamine Receptors, p. 10. Ed C. R. Ganellin and M. E. Parsons. Wright, Bristol/London/Boston 1982.
- 21 Dial, E., Thompson, W.J., and Rosenfeld, G.C., J. Pharmac. exp. Ther. 219 (1981) 585.
- 22 Chew, C.S., and Hersey, S.J., Am. J. Physiol. 242, Gastrointest. Liver Physiol. 5 (1982) G 504.
- 23 Hsu, W.H., and Cooper, C.W., Proc. Soc. exp. Biol. Med. 154 (1977) 401.

0014-4754/84/050478-02\$1.50 \pm 0.20/0 © Birkhäuser Verlag Basel, 1984

Changes in hepatic glycosaminoglycans following endotoxin administration

R.A. Blackwood, J.O. Cantor, J. Moret and I. Mandl

Columbia University, College of Physicians and Surgeons, New York (New York 10032, USA) 26 May 1983

Summary. Incorporation of [35]S-sulfate into hepatic glycosaminoglycans (GAGs) is affected by intravenous administration of endotoxin. There are significant increases in total labeled glycosaminoglycans and in the percentage of labeled dermatan sulfate 72 h post-endotoxin.

Following intravenous administration of endotoxin, the classical systemic manifestations include an increase in vascular resistance^{1,2} and capillary permeability as well as alterations in pulmonary ventilation and fever^{3–5}. In addition, endotoxin has been shown to cause necrosis of liver tissue and hemorrhage with the infiltration of leukocytes^{6,7}. Although the liver is the primary organ responsible for the detoxification and excretion of endotoxin, hepatocellular damage with decreased bile production occurs following endotoxin administration. Changes in the rate of synthesis and distribution of GAGs have been observed in different organs in response to tissue damage^{8–13}. In carbon tetrachloride-induced liver disease, there is an increase in the synthesis of all GAGs and an increase in the relative amount of dermatan sulfate^{9,14}. Alterations in the normal distribution of GAGs have also been noted in various forms of

hepatic neoplasms^{15,16}. It is the purpose of this study to investigate the effect of intravenous endotoxin administration on GAGs in the liver.

Materials and methods. Female Sprague-Dawley rats weighing 190–200 g and fed an unrestricted commercial diet were used throughout. Rats were injected i.v. with 0.5 ml of an endotoxin suspension consisting of 1 mg E. coli lipopolysaccharide (Sigma Chemical Co., St. Louis, MO) per 1 ml sterile 0.9% NaCl. They were labeled by i.p. injection of a total dose of 400 μ Ci [35]S-sulfate (New England Nuclear, Boston, MA), given in 2 parts: 0, 12, 48, and 72 h following endotoxin administration and again 12 h later. This procedure has been used to label glycosaminoglycans and measure their turnover rates both in vivo and in vitro^{8,13,17}.

Rats were sacrified by i.p. injection of chloral hydrate 12 h